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CK THE DISTRIFUTICH OF TALUSS OF SUMS CF RANTCM VARIABLES

By
K. L. Chung” and %. H. J. Fuchs

1, HNotation and Summary. X1,X2,.. are independent, identically distributed

random verters in Euelidean space of Kk dimensions (k=T,2,3,+ The distribution
function of K. is F(x) (or F(x,y} or F(x,7,2) as k=1,2, or 3}, the characteristie
function of X1 15 ¢lu) ($lu,v),Eu,v,w))- 5, ° X1+12...+Xn. {¥| denotes the maximum
of the abscluie values of the components of the wector T.

The value b is possible, if to every £ > o there'is an n such that

Pr{lsn—b1 < e} > o.

N
The value b is recurrsnt if for every € > ©
¢~ ’
Pr[lsn~b| < ¢ for an infinily of n} = 1. A\

Theorem 1. Fither no valiue is recurrent or all possible v«al‘u‘ﬁs are recurrent.

Thecrem 2. There are recurrent values, if and only ifs for% > o
..~\\
o $ )
> prils | < n} = o Yo (1.1
n=1 n \,

$
Thearem 3. There are recurrent walues, if \“Dr some o 7 ©

p

du..,
Tim -{ J. =® . (1.2)
'L--j’i(u,..

fﬁ'l—o -k

{The mumber of integrations equals tbﬁdmens:l.on k of the vectors Xn')

If for some ol ¥ C and Q.é‘fw 1

e Noo? duees
\ ¢/ [__ e < K< 0 (1.3)

T-f ${u,..)
\‘,l

then there are nb\r‘ecurrent values.

Slnee\’t.’he real part of the integrand in (1.2) is positive {see § 3}, we cbtain
by an apvﬂ{"&blon of Fatouls Lemma the followlng

#y conmection with an ONR project.

w3
The limit of the left hand side exists, but this 19 not needed here.
Received by the editors February 2C, 1950,
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CQorollary. 4 sufficjent condition for the existence of recurrent values is

o,

du, ae
[
i- ¢)(u,°')

Theorem 4. Lf 11 ,KE.. are independent, identicaily distributed real-valued

for some o > C.

randem vzriables whose distribution functien F(x) satisfies

o] Q0
g |xjdF < oo, j x dF = 0 ~ (1)
= =0

¢ \
~
then every real number is recurrent, unless al: values assuned hy _{Q\’he ﬂrtegr i1

multiples of a fixed mmber, In this case all {possible and } réc‘m:r‘ent values are piven

by b=nd (n=C, + 1, * 2. )4 '\"\."
2
In partlcula.r, under the hypotheses of Theorem %N 4
ANY;
— 7o)
lim Sn = o \s
with orobability one.  This result 1s inter'estir:g, in view of the fact that W. Feller™
proved the existence of = distribution sati{sfﬁng (41.4) and such that for srbitrarily
AW
small ?I >0 c ";; \
Pr{S < —nu{log n} 1 }—
2\
Z8 I — 0. \
Theorem 5. If X\i\... are independent, identically gistributed vectors in

two—dimensional Euclidean: sg.;ce whoge distribution function F(x,y) satislfies
N

o
P f] v
&‘3; - -
,,,\;“f' o
Y ” a2 )F < @, {1.5)
=

*the on *he law of large numbers and 'fair' games, Ann. Math. Statistics 16{1545}PF301-
Wk



ON TH DISTRIEUTION OF VALUES OF 3UMS OF RAMDOM VARIABLES

then every nossible value is recurrent,

Thneorem 6. 1f X‘I’XQ'“ are independent, identically distributed random

wechors with & genuinely thres-dimensional distributign, then no value is recurremt®

Acknowledrement, The simple proofs of Thecieas 1 and 2 are dus bd

Frefessor W, Feller, We are also in=ebted to him for much valuable advicze on other

points.

2. Proof of Theorem 1. &)} Obviously every recurrent value is also possible.
ﬁ} If b is a recurrent value and c is a pessitle value, then b-¢ is recurrsnt:

Surpcese the contrary. Then for some &£ » C

q = Fr{lsn—-(b—c)l < 2g for a finite mumbsr of indices ny
only} > 0. Since ¢ 1is possible there is an index k such that p=Pr{[S}{;c[\<&} > 0.
A\

Then :\'\
Pr{[Sn-—bl < ¢ for a finite number of n onl@r{f,'}‘

> Prilsk—cl <E, Isk+n

»>p.aqrQ, . (2.1}
. et s - s the LA -
since the distribution of S}c+n Sk Xk+1+'"+xk+n is the 'h'.-. as that of Sn and in

A"

dependent of 5 . But {2.7) contradicts the fact tBAL) b is Tecurrent,
k O

—Sk—(b—c}kE& for a<&ihite number of n aiy}

Y ) Lemma 1.  The set T of all recurrenﬁlv;{iues forms a closed, additive

group. o
Tre definition of 2 recurrent v“a.lﬁe: implirs that T 1s closed. If b and

e are recurrent, then by o ) and ‘ﬁj‘xb—-c is recurrent. This proves the group
)

property. \\ o

Coreollary. For a o!}g—@imensional distribotion there are the following three
pessibitities: ¢ ‘l\ / _

1. T is the'aigzﬁﬁset. 2. T is the set of ail real numbers. 3, T is
the set of all integ(r@”r’riultiples of & mumber A . For these are the only closed
sdditive groups "c»\f"‘;eal numbers.

Sii\l;f":'l‘ is mot empty, then 0 € T, by Y J. If ¢ is any possible value,
then O-¢c=—c €T, by B ). Hencec €T, by {3). Tris proves Thecrem 1.

Proof of Thecrem 2, &) If for any h> 0

¥
Theorems § and & generalize results of Pélya, Ueber eine Aufgabe der
Wahrscheinlichkeitsrechnung betreffend die Irrfahrt in Strafennetz 84 ( 1921 )pp. 1459160,
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(2.2)

vig

prils ! < b} < o,

[}
—

n
In particular

= (i,

then by the Borel=Cantelli Theorem I-‘r'{ISn| < h for an infinity of n}

{0 is not recurrent and so T is =apiy.

ﬁ) {1.1) implies
q(@n) = Pr{[s | 2 2h (n=1,2,,..)} =

Let
r(h; = Pr{lsni < h for & Tinite number of n only}.
Then o\
L. X L \ ]
12 r(h}> 2 Pr{|SkI < h, lsk o L{J 2 2n, Min=1,2,...)
=1 « \J/
o0 N
=3 Pefls | <njatem),
k=1 k v

-5 is independent of S& and has the sume diabribution as 8§ . Trhis con-
; n

since Sk+n b
.’\ >4
tradicta (1.1} unless 3(2h) = ¢

¥ )} Supposs now that (1.1) holds for é*)’ergr h > 0. Then

— _- 1 _ .
) - k{z‘;erﬂs | <n-nls, 12 h(n=1,2,000)35a()
e 1 1
% Pr{|8ki <h-g} Pr{[skm-ekl 2 = (ns1,2,000)]

< N\
> wTh
\\
RS > Pr{ls | <n- -} af -)
'.\, w1/h k=1
This concludes the pr'g‘éf’oi‘ Thecrem 2,

X
kR Prc%of Theorem 3. We ive Lthe procf for the case of a two—dimensional

d:.stributicn\‘{:z he preofs for other dimensicens differ only in trivial details,

’Isezt./‘t.he componshts of Sn he Pn,Qn.
"4

gls,8) = Pr{[p [ <5, lo ] < ¢}

noh -
iz a denreasing funetion of s and t . Hence
~
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h
ds j dt g(s,t)

2
n’ pr{ls | <®} = b a(nh) 2

O Sy I

By & well-known formula the right hand side is equal to

oc .
1 i~cos8 hu 1-cos hv n
--1-‘—2— 5 5 § (u,v}dudv

u v
-
Now if C < P <1,
@
1-cos hu 1-cos hv du dv
JJ Qo
* 1—f¢(u LN
.\““\
-1 . z\;
A2 JJ du dv '“:'\w‘.
o i-f ON
é . {K; )
=h
>
1-cos hu -1 -~
since 5 > a{h) > 0 for {ul <h . Heeg)
u . \/
.~:~‘£” -1
.s,:“* h
@ 5. & } da dv
> f rrf |8 “h U ' .
=0 -1 I u,v
i {Q -h fsv
'\\./
Notice that the integral is real-valued, since $l-u,—v) = Plu,v). since (4] <1,
t”"""‘ 1- R¢)
S -f i-P 5 o.

{Ry
p7mpt hepel® T Deptl®

1If (1.2) is true fq&»Certain o , we have Tor h < o -1

R

~‘0 w4
oY > Bprils } < m} =
ﬂ\,t f_}1_0 Il=0 f n

v/
But {1.2) holds a fortiori if we increase ok, hence the above is true for all h.

Hence {1.1) is true and there are recurrent values by Thecrem 2,
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Now let G (x,y) be the distribution functien of 5_.  Then
n

h h

1 -
Pr{|s | < h} = JJ 46 (x,¥) < m JI T T

=h -h
-1 .
L'CL;Q.I‘_I dG {x,¥}
n
@ -1
1 J T-cos h "x 1-cos h'Ty
- dG (x,v}
Aa(h_’) ] ye n?
- N\
- -1 O
h h t W
s \J\a\ ;
- 1 -~ J ds J dt J du J ,’c‘lq ¢J {u,v).
447(h77) AN
[ o -3 ,—’t’;
Hence \\\\

ERNY h1 st
£ on Pr{fs | < n} g -—21—_,,-.-_\\j ds J at g Sudv
n=o BB QN 1-pba,7)

PN o o - -4
ONY ol
AN £ SJ' dudy
&« —-—2—-.-_“ L
" v 4A (h—‘!) 1—r¢(u,v)
'\
o\

If {1.3) is true for a certai{’\o{} » we have for h=T < &

7'\, oo
Lim ™3 oBppf|s ] < hl < co.
P "% n=o n

N/

{
But {1.3) holds a.“{&'tieri if we decrease o , hence the above is true for all h.

*{\eoran 4 is a consequence of the Corollary of Lemma 1 and of the
sl:.ghtly more genera.l,

N\
\/’I‘heorem Ja. If X X

gofarree are independent, identically distributed random
variables whose distribution function F(x) satiszfies
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Y
I x dF(x) = o (1)
-1

Y J dF (=) = o{1)

B TS B §

as ¥ —-» oo, then recurrent values exist,
Proof. We notlce first that

Y
2

J X dF(x) = oY)

¥

ag ¥ w—3 oo, For writing P(x) - F(-x) = Fix),

Y T
J = J CAFF(x) = 32(1-F*(r~){?{9f1 x(1=F*(x))dx

How
1P B(tmpdlu)) = 1-f+?f®\1—¢(u))
N\
. K
< 1-;> S (}vc\o% x u) dF{x)

)
N/

/\.,../E u]
< ‘J::? ,1§ g (xuj2 df{x) + 2

' 4
\ed -1/ ]l Ix| > 1/lul

RSy
\
4

since C < 1 -~ cos x v € min (2, % (xu)a). Hence, by (4.2) and (4.3}

R(1..JJ¢)) < 1_.}>+ ofriZlu|N+ol|nl) = T-f*' offul)

as u ~—>» 0. Also

o(1)dx = o{Y).

{4.1)

(4.2)
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iIf@](u)] < | I sin x udPF | < J xu dF{x}] + 0( J xeuedF)

|x} < 1/]u] Ixb ¢ 1/]u]
+ 5 dF N
[x] > 1/[u]

since sin x u = x u + 0 (%), Hence, using (4.1) and (4.3) |If¢){u)| a(|ul).

Given e > 0 and o> € there is an d - suchthatin{)(u(d

N\
R _ R(1-pd(u)) ~N
1= p=) (RO pou))® +(1 pu))? 5\
> —1=Ff > 1-p

(1=pseu)aien)® Py Q(cu}

and so, using (3.2)
ol of o, da\\)

1
= ZR 2 ER D .
J1-f¢(u3 J, ??‘3 a- f) S
4 Q

=]

o
N dy
as r-——,‘r 1 the last integral tenqs Yo E j ———— = .
1+(ev) he
[

“\
Since £ is arbitrarily s 3,/(1.,2) must hold and the theorem is prowved.
Hemark. The*gondltlons of Theorem 4 are net necesaary and can be varied in
several ways, E.g. we\g,én replace (4.2) by
0\5/
&
A Y aF(x) = o(1),

‘{\
RN Iz] > ¢

s

if at ’t:h%mame time (4.1) is strengthened to

J dP{x) = o,
=Y

i.e. the distribution of Xy is symmetrical, But some condition like (4,2} is necessary,
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even for symmetrical distribdutions, as the follcwing example shows. Let £ <z <1,

=0 (lx] < 1)
FHx) = FY(x) (hoh)
e Uxl > )
= § el
Then, for u > 0,
@
B |
P(-u) = J cos xu dx
: {\'}0
o wg-1 (§‘~§.
=1=2c J {1-coz xu)x dx \?"
1 {»”;\«\3

[i}

=] N
c wg=1 \\\<"'
1-cu j (1-cos t)t dt N\
u

Hence {\ \
o &

J1 rd)(ubfz I Aul:”x(m’-

o

sa that no value :.sc,xg;irrent Here
o

N N

Y
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5« Proof of Theorem 5. Under the hypothesis

00
i0meyv)
=plu,v) = H (1-e JAF (x,7)
-0
w
2
= o(j[ (xu+yv) ClF) .
—n
Hence
N
J1u,m)] < & JJ (B )ar = BiaPer?), A
RN,
~c )
o & N
dudv 1 jJ’ duy ,}Z\\ ’
2 = —%\4 =
[ T_¢(u;v) - B 1 '{,r,
~al -o \\ g
and Theorem 5 follows from the Corcllary of Thecu:‘emx \\z

Remark . The condition (1.5} is not,(.m:éqéésary, tut it can net be relaxed wary
mchs ¢ v
N/

Let RS

.~x
Fix,y} = jf A (“; T (?Jdg "

where Ff is defined by (qxgj\xu* now with 1 < ¢ < 2. A calculation very similar to

that in § 4 shows that @r}ar the origin

${a,v) <~LM<I 1©)(1=k|v] ) (1<ex2)
AL ehule o ey
?.[‘3\}] {1+v2 1og ju| + 0(u2) ) (1+v?Log|v] + o{v2}) (¢=2)
Hence, fg {'\-:2,

s ] w ] g
1—43(11,?} 1-¢(H,V)
-d
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Ly i o

J‘ du J .__-.(.i..l._.._-—. = 4 ——-—d—u— = o
¥ log(t/¥) u log {1/u}

° o o

ard zhere are recurrent values although

Jf&#ﬁwmw=m

o ol u
II du dv__ du dv < 8A J du d: <@
1-)od>(u v) u N

- o o

snd no vilue 1s reecurrent, EBut "
i

£14<c<2, then

) . WV

I e -2 Jlﬂ%;uﬁx<m, o
-0 . \:\';}

if b < g, Eence the condition {1.5) can not be replaced bj: \:

[[ dxibelsPareum < o Ky
with any b < 2, QO

6, Proof of Theorem &, Qur assumptq:@n ¥is that there is no plane through
the origin such that X1 lies with pmoab:.llty bng in this plane., (The distribution is
genulinely thrue—dmensa.anal). Hence therg :Ls“a sufficiently large R 3o that

<\
J J (ux+\ry+wz) \Nx,y,z) > G

,o

‘ ¢l

\ . .
for all u,v,w, with u +\r2+<.{2\1=~0,. For the left hand side can be equal to O only if sll
passible wvalues of 2(1 i;chs{IX i < R lie on the plane ux+vy+wz = C with probabiliity one,

Therefare 4 is a DDSitN’§ definite form in v,v,w and hence

"\2“2 2
M{ﬁ+v+w)

Chocse Iu[,|v|, ’I < 1/R. Then

B{t-fp(n,v,w)} = ajff sin® - (uxavyswz) dF
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R
-
22 UJ 2 2n 2> A(uPetnd),
=R

since in max (|x|,|y],[2]) <& Jucrvyswz] < 3 and so
1 2 1
|sin 5 (wcsvyawz)| > 73 juxsvyruz|,

Hence for 4 < 1/R

-3
fIf e It UJ 5\

Theorem & is now a congequence of Theorem 3,

£ \.&
Cornell University : \:’\
A\\‘
¢ &
N
4
N
(N
&%
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By
K. L. CHUNG and P. ERDCS

In this paper we consider sums of mutuelly independent, identically dis-
tributed ramdom variables, An essentizl feature is that we assume only that the first
moment is zero, or that both its positive and negative parts diverge. Part I here
deals with latiice distributions. FPerhaps the main results are Theorem 3.1 and

Theorem 8. We hope to take up other cases later.
1. Let X be a random variable which assumes only integer values

P(X = k) = p_ A\
— i o
pl 2 0 2_pk = 1 - '\ N
A\
A number is sald to be a 'possible! value of an integer-valued random va?iable if its
probability is positive. The possible values of X will be de'lot.ed by uy 2 1=1,2,4443;
they may be finite or infinite in number. 4As usual Sn = > Xk\'here the Xk are
k=

matually independent, each having the same distribution us\\x.
To avoid minor complications, we shall asbuﬁle that every integser ¢ is a

poasible values of 8, if n 1is sufficiently large:. " >n (c) 4 set of necessary

S\
andd sufficient conditions for this is the follg\f:lj:ng’:
{1) The u, are not all of ,tiﬁééame 2ign;

(2} The greatest commorydivisor of the set of differences
Wou,,1,551,2,.0 is equal to 1. <i}

We shall cell theNollowing two sets of assumptions (0) and (oo} re-

spectively: )
(0) sllx]) - ZRp, <@, B - Fe -0
N o
(o) 1E{1;|+x E kp, = o, FE(|%[X) = =3 kp = .
»\ ) k=0 k=—to

Thus under ( 3 br (m) {1) is always satisfled except in the trivial case X = O, vhich we
exclude. If (2} is not satisfied, there are two possibilities: either all possible

Received by the editors January 5, 1950.

In an unspecified summation the index runs irom —co to +oo.
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values of 3, are multiples of an integer > 1; or there exists an integer m > 1 and g

complete residue elass mod. m, Tgarea,X, such that for a fixed 3, all possible valies of

Smejs 1=1,2,°%%, belong to the same residue class rj(mod e}, It dis hot @ifficuii vo

see how ou¥ statements and proofs should be modified for these cases.

In the following the letters a, a! denote arbitrary integers, A,4' .5
cositive constants; £, &! arbltrarily small constants.

2. In this section we give some simple thecrems on the bounds of E—‘{Sn:a).
It is well xnown that under more restrictive assumptions more trecise results can ne ob-

tained (see Gnedenko [1], van Kampen and Wintner 2], Bsseen [3]).

. N\
THECHEM 1., Under no assumptions about moments whatsoeyer)
1/2 ¢\
= = 6\
(1] P(Sn—a.} < An O
2 N
where A does not depend on n or 8. If E(X') = oo, then 79 \
'\\
(2) Lin  n'/2p(s -a) - o, NG
Tl v

Froofu  The c.fu™ of the duf, | of Xa8”
”

£(x} = Epkeibf’..:f\

/
& M

The c.f, of §, if {(£{x})™, and we have

3
E XY
e

ay
P(S, < a) - “aji_\_ J‘ (2" o748y,
O &

Suppose first that n is eye}.\ n=2m,  We have

RS .
b 4 \; .
J:\} (1) PBi8%gy] ¢ j oo 1),
’\\i../ -1 -
Now If(x)!a j:&}'t}e ¢uf. of a symetrical g,r

N =y Damely that of X + Xt where I,X' are
mutually,..ie’dgpendent and X* has the same distribution as -y, Hence we may write
) 4
2 ey @
ff(x)] = > ry cos kx, rn20, ¥ r =1
k=0 k=0 K

*Characteristiec func tion or Fourier-§ tieltjes trans form,

 Distritution functien,
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@
=1-2 2 r, s:r.nz--%i.
k=0
Suppese Ty > 0w If x ¢ nﬂ"1,
2 _kx 2 e a2 2 5. 2
2 > r sin Tga(grk(ﬂ})?_ 2 rkS > Ax
¥=0 k=0 2 k=0
[£x)]|% < 1 - A28,
Hence
] g1
S|f(x)]2mdx< S (1-8 %) %ix » S | £(x) [P ax.
4 O
- -k rrl'1<lx| Lm
It is kmown that if T!( x| <, then [£{x)] <1 - 5(‘:1 Ja  Therefere we‘he}ve
11 1'[9~ —1 m@ Y \,,z
-A N\
g |f(x)[2m dx £ J e dx + o({1-¢)™). ‘
&’
o . w1 ~:\

{1} follews for even n. Noticing that [£{x){" < |f(x} | -{}ie see that the same proof
goes through for an odd n. \‘

To prove {2}, notice thai the asswnpt:l.on E(X8) = co impliss that

o

oc. Hence ,’.‘;
> k2r.' =, O
k=0 N
ang the A' in the foregoing can be a@sn arbitrarily large. qu.e.d.

E{{'}‘{l-f{'} 4

& lower bound fo K{‘S'—a), under the asswmption (0} or {em ), will be
given in Theorem 2,2; we shall™glsc show that our estimate is close to the best possible
by exhibiting an example ip'\’i’}ﬂésrm 2.3, In one special case, however, we can prove

4 much stronger result, '&d:this i3 Theorem 2.1.
THEOHQ“?.L If the d.f. of X is symmetrical, and E{{X|) < o, then

{3} l:.lp.\ n P(8 =a} = o,

'"\
\ } Proof. Since pk:p_k,f(x} is real, S3ince £(0) = 1 and f{x} is con-
tinuous, there exists a § > O such that if |x] <& , F{x) > 0. We have

o

P(3,4) = —) J (£x))" 008 axix,

[
=1

-0
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3
R j (£(x))ax - o((1e)hy,
b
%

ir §< -3—:—-‘ + As in the preof of Theorem 1, we can write

o
1=f(x) = 3_- erk sin? _l%c___
k=0
o)
Since > oy < oo,
k=0
o
lim 1 3 T sin2 _lé__oc_ = 0.
—30 x| 10 N
Hence given ¢ > 0, ir [x| < 50(5) <§,1-1x) Lelxl. Now A
&\H
& 50 ;"\.\ -
n et 4
S(rtxn ax 2 (ot Yo = 22202 o)™
(n+1 )E' l“\'“
-5 -5 A\
2 . \/
3ince £ is arbitrary {3) follows. \\
N w
THEOREM 2.2, Under {0) or {o) we ha{rest\.tbr &ery e > 0
e \
() P(S,=a) 2 (1) AV
ifn>n (e,a). ,’::'.

Proof, If the possible yszlgéa of X are bounded, then E(xe) <w. In
this case it is well known ang also §&é’jf‘?;0 show that
1/2 80

lim k) '\a(s =2) = A< o,
I—=> oo \\ n

This is a much sharper rgsgfl,t) than (4],

Hence we M3y assume that there are possible
values of arbitrarily lange magnitude,

~s
Givexz;\‘é:\,» 0, there exist arbitrarily large z, and z, such that
\.3’

this is possible under (0) or {w}.  Also there is a unique h such that
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2kp < | > kp| < ke
G K Tt KT 5K
Then h > %y and
h
hph 2__%' kpk =C 0.
Defina pik =P if k £ h, but
P'h =Py ~Ch7F >0,
Then
b N\
b= p', >1-e-p > 1-2 )
i Tk T <O
‘.0\\ v
h « \/
g ' = Q. 2%
Sy kpk AN 3
"'\g.'
Now define a random variable X' as follows: \:\,}
= k) = ptp~l -t )
P(X1 = k) = pkb if h %xlig:g,h
=0 ptbef‘wise..

/
& W

X'k where the X'k are mutually m;iéb’éndent and each has the same disiribu-
1 AN

3
al
L

tior 2s P,  Since pt < P for all k

S

(St = a) > bTTR(3 3‘3:{\ ht < % < hfor 1< kg nhs

ifence \’\ '

P(5, =a) 2 R{g;n): a; ~ ht

A</
> F(-ht 5)*{@ h)nP(SnsaI AL Shior 18k g n)
2(1-;2’\%}}15'(95:5‘) > (1-€ )P(1-2¢ Yan=1/2
R

where 4 depa.n"Qs';‘an £ by definition of Xf, This being true for all £ is eauivalent to
(L). ~\;w‘
\' The ides of truncation in the preceding proof is due to Shiszuc Kakutani.
Taecrem 2.2 was first proved under (0) by W. H. J. Fuchs using a result in Chung and
Fuchs {4], namely

Shfortgkgn)

o

*P(E|F) denotes the conditional probability of E under the hypothesis F.
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¥

{5} P8 =a)=oa,

A similar proof using (5) was also given by Kakutani, We sketch the latter proof as
follows,
From (5) it follows by the Cauchy-Hadamard criterion
Iin (P(.*sns=o)J1/n - 1,
D000
Hence given £ > 0, thers exists arbitrarily large m such that

P(s, = 0) 2 (1=)",

Oensequently for all integers k > 0, O
P(Sigy = 0} 2 (1-€)%®, Oy
We can also choose the aforesaid m so large that . \}
min P(sv=a) = At > 0, .“.( N
"viem 4

Now fix m, Ir n={k+1Jmer, k > 0, £ <r<m we have

P(S4=a) > P(sm-br = a)P(Skm =0) A\,

ke D
2 A(e)™ 2 ar (1) (g Y0 Qeeds
THECHRY 2.3,  We can constructdn “example satisfying (0) and such that for
every given B > O there exists a sequence {n;l for which

P(8n, 2 0) = 0(n"B). %

;s,..: be a sequence of positive integers increasing to

Froof, Let Aoyyv=1
o 3o fast that for BYEry £ D O

~ Define < o
Y=t with prob. 3
O
O\ —v -1
R\ 4, with prob, 2 A v=2,3, 540,
Then E(X) \:"Q‘.’ I k is surficiently large
Voo Yin 5
Max X >a)<n 3 1 —2 .,
1<vs<n &k vekel 2% =
v k+1

¥*
However; the assumption (0} does not imply the truth of (5) (see [41); +thus the
following proof does not hold under (co )}
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Let

Xif X<
x*={ R

0if X > Ak
1]
S, = 2 ]{'lt'V where the X*v are mutually independent and each has the distritution of I*,
v=1
We have

B(on) = 2~ p0) = oga)
P{5_ > Max < =
(n_oJIKvsnxv_ak) P(3%, > 0)

< F(lex - E(sx) 2 [EC(e )1).

Let = be an integer > 0, a routine computation shows that \' \",,\
om 8 —(i+1) 2 A7
E(|o% (s )PP <k (5 mame (@12 N
v=1 > ¢
'\’\‘
m _m NN
St ap A >

where Km,K'm are two positive consiants depending only on’ \." Hence
N
b m (k%‘lj “D1
P(ls%E(s2 )| 2 [B(s2)1) < o] 23 Bm),
How choose . &
E
nkm Ak“"l “’, N
we have, by the property of the seguence. Ak,’
A

AN

P(S, > 0) < P{ Maxy X, > b} +P(s, 20 Max X % 4)

hy 15@4}3" b+ Ty T
SQQ(Q-T/Ei-T*nk—m*S) . O{hk-B}

N

"\5

Theore%é 3 should be compared with a result due to Feller (5].

by choise of &£ and m.

3‘ The theorems in § 2 were proved by fairly standard analytical methods,

We are unab]il;d prove the theorems in this section by similar methods, except in the
case where th€ d.f. of X is symmetrical, i.e., the c.f. 1s & real-valusd function. In

this case we have as before
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]
fP(Sn=a) - P(Sn=a'}| < J |cos ax-cos a‘x] ]i‘(x)]n dx+G{ (1)),
Choosing & so small that cos ax > 0, f(x) > 0, and |cos ax-cos a'x| < &' cos ax for

x| €%, we have

§

IP(S =a) - P(S =at) | 2 et j cos ax(f(x])? dx + o({1-c)1),
-5
On account of Theorem 2,2 it follows that

P(sp=a) - P(3_=at) = o (F(5_=a))

which is equivalent to Theorem 3.1 below. We have not been able to prove the thecrem
by this method when £{x} is not real-valued. Another relevant remark is ‘;r}e fellowing:
if instead of the individual probabilities P(S -a.) we consider their {@E.uué, ther it
follows from a theorem due to Doeblin [11] on Markov chaing that ¢

E N " N
2 F(5 =a) KN
Tim k= k = 1, a.'\:
N30 n ',"\\
2 B(§=at) v
k=1 \
N
THECREM 3.1. Under (0) or (e} &
% 3
P(g, %)
1im —1 =1

D—300 ~:~ﬁf5n=a' }

Proof. For some k Uy —ug, *s\4-uy have g.euds 1, Thus there exist in=

tegers c} and ¢; such that \"\
} k k
.. g £
H--if‘ai )t 2 2
i=1 ¢ i=0
Let P(x=ui) = Q4. Ccrrqspondmg to every representation of & in the form
3 2
(1) =D ngu, n. » 0, > n;=n

\s' i 1 =6 4
there is a realhatmn of the value a by x1+---+;cn with probability
NS
)] \"\3“' —ab 7 | ‘Lj_
nOI---nil i=0

vwhen n; of the X's assume the value U;» The total probability of a is thas
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I

Pl

noln-nll i=0

vhere the sum runs over all representations {1). Now write this sum as

© 2505

where in >:1 the conditions

|ni-nqii < &n, 0€ig<h

are satisfied, while }_2 is the rest.

Consider the event X = u, with probability 93 Ny is the nwn‘oez.-\of its

ocaurrences in n mutually independent, identical trials. It is well 3{}3&@ that the

probsbility that Ini~nq_ii > En is N\
N/
O(e'c’an). N
? ~\'“
Kence A\Y
{4 = 'Cr'an = = \ '
{d} 22 < (R+1)0(e ) = ofP(S =2)) :.\\,,

by Theorem 2,2, for every £ > Q. $
Now consider a representation (1) e ]ni—nqii <enfor 018, If
*

£ iz sufficiently small and n sufficient;yié?ge, we have n, > n{q;~€) > en> |ci| .

L2

Correspordling to every representstion Pf‘g:“in the form (1) there is a representation of

a' in the form {mg\
k N 2
(5) at = > (n,+cu. > nau, = 2> niu
oo 2 ME gk Y1 ogs i1
</

where |n:'L-nq_I < Ben. ,\@Le‘ ratio of two such corresponding probabllities is
i g,

. N W
.§né"“nk‘ - n}-ng nl:—nk

.‘\g ntfresntl “-qk ‘
N 4] e

If m'> m\’hﬂ;ar{q] < gn, |ml - ng| < 2en, we have
mi qm|__m (qn}(c_n)‘"(fm} nm_mf
m'y m?(mt=1)sen{m+1)

S(ﬂﬂ——“—}m'-ﬂhm”m' = (T_—'lz‘—) m'—mnm—m'
{g-2c)n
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o' —m mt-m :
ml q > ( 1 ) _nm-m.
mt} I -7

2
= > n, it follows that
o *

(1-1° <A < (aen)®

k
where € =3 [ciE Since £' is arbilrarily small we have 1im A =1
l: N—303
Let us write the corresponding formulas {1} and (2) for at:
3
a‘=>n'u, 2 n! =0 .
=0 11 i=0 ? N\
S ,o\’?x’
b Z =2 4+ - e
® B - O
r L PN
where in 21 the coendition |n - nq | < 2en are satisfied flnduxé\‘ Bt < L. We have just
O
proved that \\»:}\
>
. = <. \\>
e300 > ¢*{
= AN
AN\
Using (4) we conclude that QO
. P(5.=a) N
1in n :“.;;.

n—3wm P{Sn=a' b

Since a and at are interchangeq;gé\we obtain Thecrem 3,

THEOREM 3,2, ’\@%hose vatues of n for which
4 N e —

7N
L D

% Pls,me) 2 6F

x'\“’
for some fixed B V\ ¥e have for every £ > 0

(8) ‘.}»P(S =a) - P(Sy=a')] < P(s_=a)an"/2%€

7 N/

where A\“n\mz depend on a, a' but mot on n,

Proof. In {3) we re-define z’l to be the sum of those terms for which

Ingna, | < n/2% 0¢ig k.
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1/24¢
As before, let (5) correspond to {1), but now we assume n so large that n >|Ci|, 50

vhatl

1/)244;

|nt-ng | < 2n .
i i

—
We re-define > in {6) to be the sum of those terms for which this is true. By well known
i

astimetes on the binomial distribution we have

- -hn® ! —Ant
(9) S,role ) Hoole )
Now consider the difference of two corresponding probabilities (1) and {&) ~
a = ___J_._qo ...qi 24an). O
ﬂol"'n i P\ e
O

If mengsr, mlsngsr! where Er_rl| £ Cand |r| £ n1/2+c Ir'] < 2n /E’K',san easy application

4

¢ &
of SLiriing?s formula yields .\“:\
mi qml—m=nr-r1(1+O(n-1/2+3a))’ ’\"1.*&95“'1/&35')-
m 1 ,’g\
)
k N\’
Singe » {r -r!} = O we have W
fw0 17 RN
‘:,.‘; ’no g =1/2+3c)
[¢] ¢ —Ble= g, “...q, “0(n .
SN 2
n !--ﬂ%l
Hence ~~\\ y
-4 2{-35 — _l
I2(s -a)—»P(Sn~a"]\§ 0(Zy.n )+ 5t 2,

The first term on the r:.ght\z,é C(P(S =5.).0 1/2*35) and the other two terms by (7} and
{9} are of smaller orde.{'}g magnitude. Thus (8) follows.
THE@\ ! 4. Under (0) or ()

AN ) P(s, =)
& Rt
} a1
\' n———00 P(snﬂ =3 )

=1¢

Froof. For every representation of a in the form (1}, there is & repre-

sentation of auuo in the following form
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atu =(n_+1)u, + > nju, .
i=1
The corresponding probability is

(n+1)1 a g+l q ny q Ny
o I B
(no+1)ln1l ngl

The ratic of this to (2) is (r+1 )/(n+1)q0. if ]no—nqol < en, this ratio is betwaen

1-€/q and 1+|:/qD a8 n—> w. The range at values of n, such that ]no-nqof > &n zan ba

neglected as before, It follows exactly as in the proof of Theorem 3 thats.

P{3 =a) A s
Iim —_—— <1, <\
- = N\
B K3, ge) Ke
By virtue of Theorem 3 this gives )
A
&/
—  P(S =a) o\
il ,S, 1. \
> P(Sn-|~1='a) \\J
Considering a—-uu instead of a+uo in the ahove in a~}iﬁﬁlar manner we arrive at
- P(Sn=a) O
lim T— <1, N
n—300 P{(3 _=a) s\
n-1 oW

~

These last two relations combined ape eEuivalmt to Theorem 4,
We remark that Thgo.ﬁm 4 can be proved in the same way as sketched above
# )
for Thecram 3.1, when f{x) is\M—valued. It would also seem that we might be able to

deduce Theorem 4 directly fr:gm Theorem 3.1, but a trivial argument gives only the follow-
irg. Since PN

x:\;..? -
PEL =a)=> (s =al) P(X=a-a')
.%\41’- aT=mco n =
R\
') 4 ;
D 2 2 P(3=a'}P(X=a-a').
”\3 al=—4 n

It follows easily, using Theorem 3.1, that

Lim T

B—3®  P(S,=a)
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Bu%t the other half of the result seemz difficult.

4. In this section we study the number of a-values in the sequence 51,...,Sn.
& very sweclal case has been treated more or less completely by Chunz and Hunt [6].
More general cases, in which the existence of certain moments are assumned , have been con-
sidered by Feller [7] and Chung [8).%# In this paper we are considering a more general
situation amd precise results are not hoped for at {his mement.  However, we shall prove
the reisvant Theorem 8 whose truth would perhaps be considered evident but whose proof,

as far zs we can meke it, is by nc means simple. Theorem 7 gives the true bounds within

Al £ DOWer.

Define

(=]
P
Fy
0]
B
w
v

&
] \/
T =2 %
n =k )
AR D
M o= > ~\\
E(Tn) =¥ s 2 o, "N\/
k=1 v
and similarly Y!k’m}‘(’T' ML, for a'. AN ’

THEGREM 5. Under (0}, for evemr 5 > o,

-1 [ > M3/z‘ 5\.0 ) _ o,

Proof. By Theorem 3 \md the fact thait M —‘r o a5 Ne—> 0o

3

iy - '“:’“+‘ 2, S Y (v-1)+ 3 YI(yi-y
E(|1,-1[%) ﬁ{;‘i‘iﬁ 21 j,?e'k YY1 ji’k j( v ) ot
:“\:‘.
|+ 3

<« pi\nj .y mé + om

N,
NS

j;j M3k _jk

oY -
\”\ (S8 N ]mk—m}'ci .

*The results in [8] are stated for the number of crossings of the values a, but in the
case of an mteger-\ruulued random variahle they can be easily translated into the number
of a-values. #¥ i.p0, stands For !infinitely often! ort'for infinitely many values of the
index,!

} Henceforth in an unspecified summaticn the index runs from 1 to n.—E—un <L v, means l;ns(IvR
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Aceording to Theorem 3.2, the m in the last sum can be divided inte twe classes:

either m < k'e, the sum over such k being Q(1}, or the estimate {8} holds. Hence

o _ -(1e)/e
E(I‘I‘n—Tr'lI ) S 0M) + oM, Smk e
t
By H‘older‘s inequality
_ -{1=e)2 _ 2/(1see) 1/2se _ -(1-s)/2 2/(1-2¢) 1/2<
om % < Gny ) Gk ) )
_ 2/(1+2c) 1/24e 1/2+¢
< AGm ) LA .
N\
By Chebychev  dinequality A
. ¥ 4 \’
&N
3kt - N\
(10) pllT,-ml >u )¢ L \J
Since m —> O by Theorem 1, we can choose an increasing sequenee’ n‘k such that
7,
L W
(1+c)/c e
MnkN k . \4
N
Now suppose that for some n,n, <n Sﬁxi.‘ we have
3/ hse { ‘;“
{11} 1T, T > 2Mn/ . Ky

C XY
L

N
Let n be the smallest such integer, fopHich (11) is true, then either Yn or Yr‘a mrat be

1, hence S =a or a’. We call thisfagént En. According as Snra. or at, T

\ nk+“I

~T is the
n
8
N’
nunber of 0's or (a—at)ts in t}Q\sequence of partial sums of X sesX, o+ Llet the
A 12 ket

L >

svent P <
\.J 3/hae
1, L (1] <
S Per R R T R,
be denoted by’E:;\ « By (10), if k is sufficiently large,
N B e 1
) PE [E3>ten® >1,
N Bofyy 0" = My — @
Further it is clear that
F{E E! ...Bt E }%=F y> 1
{ nyﬂkql Ut i (En,nk+1IEn" 2 3

ang FIi' E,F are two events,§' denctcs the negation of b,EF denctes the conjunction of B
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(this follows from the Markov property of the sequence 3 +) HNow B and
n

Payeq

E} «aoBf 4En together imply

"k

a >
T, T >N .
Il
Ber1 Pkt L
Hence
n
] | e B
p{|lT. - > M 2 P(E! ...E! ,E _JP(E E' ...E' B
Beet  Dha Myept n:'.n}c My n-1'n ¢ n’nk-ﬂl E&c a=1 11)
1 -3/ b
3 P(E‘ vosEL ) =%P( Max lTn—Tr'1|Mn > 2) )
r=1y n, <oday 4 O
Thus by (10) Y
N\

- -3/ - \

T B Max IT,-Tt M, >2)ge 3 M < oo N

k n, <n<mn n £ e e,

L Y '\<.'
It follows from the Borel-Cantelli lemma that v
0\.;
(|11 | > 2}13/1‘ ©  1.0.) = 0. '\';).‘
X J

This is equivalent to the statement of Theorem 5,

N 3

The next thecrem is a mew type «ei‘ Yimit theorems The sequence of random

variables Y Y sues does not obey the usug.‘l‘.la.w of large numbers in the senae that con=

stants & do not exist so that w:.th }il\?bablllty 1,
Y teaaty \\
lim 1

TI—C0 & ’; 7

1.

D .

By analogy with the i;,u;.%'ion for sums of independent ramdom variables with finite first
Ne/”

wements, we .:hcn.lci XG’G o take A to be the M above, That this is not true is

shown already :Ln\thé simplest case of Bernoullian va ria.blas X1 XE"" whers ea.ch

L o=x1 ea&Q Jith pro‘bablllty 1/2. In this case m ™A 1/2, u NEAH/Q, but the

sum  Y,+..,4Y, oscillates between A‘n1/2(log n)~1-€ and A B?xe(lcélog nj 12 Len

1
probabilily 1 (see [6]). However we shall show in the next thearem that, in a certain

sense, Yk does behave like its expectation m., 45 Tollows.
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THECKRM 6. Under (O},

P( lim 1
M0 log Mn 1 I'[k

lels

Notice that in this formmla if we replzce I by e the limit relation holds without the
intervention of probsbility. If we regard (Y1+...+Yn}/)'ln as a sort of 'arithmetical

average,! the quantity

n T
-1 3 . N
log Hn k=1 LA
<& \

may be called a Ylogarithmic average.? Evidently the existence of { tbe mathematical
average implies the existence (and equality therewith)} of the logarg.tmlc. The first

instance of considering such an average in probability is duit(g P. Levy [9], p.270.

Proof of Thecrem 6. We have \/
= Yk - m '\/
E( > J= > —K e - log¥ \som
K ¥ X
k K AWV
Next RO
- Ik 2 _ ™ N - m mk
E(( T )):2.‘;?._*‘2?_ i ked
M N
k \“ k % Hj”k
S
ENJ n mn n
oz 3o 3 Ded
e FOM ket M
\J
Hence ,'\;“’
;"\:'_ Y 2 - Y
0.;&3(( z k)% - B S .k )
\ K
‘.:; k
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m % mk
k=
J M : 1 111)“‘j

. 0(leg ¥ )

1 X
4

< Hlog l-!n) + 2

[N

-2

< 0(log Hi‘lJ + 2

A

§]

By Chebychev inequality

- ¥
P(} 5 —Kew -~ log M | > £ log ) < o —1— ).
L n log M

Choose an increasing sequence n, such that

M Nekz. \
e A s
D)
By the Borel-Cantelli lemma, ‘o
ny
1 L TN
P( 1im 2 X =1) =5
k=300 log M i=t i AN
ﬂk \\}
Now if n_ < n < nq 7 \d
nk % .}\
Y M L 5
1 ; i PR z d
< 'K, = ™ My
log M k=1 i oy Flogm i=1
nk+1 ,\:\“ n,
‘?:; y . .}9'1 Ii
N —L—— 2 .
log M i=1
Q e M

¢

Since log M [log Mnk-—-—)1 as;.:c\\——Q- o the extreme sides of these inequalities —» 1
k+1 $ '

£
o 4

£
with probability 1, by whg‘cfh}as just been proved, Theorem 6 follows.
"\ L.
MO%‘?{:\ Under (0}, for every e > 0
1+£

P{i’% < T <H for all sufficiently large n) = 1.
AN n n o == gufficiently JArgS

PN

\/ Proof. This is equivalent to the following two statements:

1+C
4D P(T >M j.0.) = 0
n n

o 1+€ .
(2) P(T <M, i.0.) = C.
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The proof of {1} is similar to that of Theor em

5 and will be omitted, To vrove i2), we
¢hoose v=v(n} such that MVNH;'C;

this is possible because m,——> C ang }ZnT“cx-. From
Theorem & we have, with probability 1,

¥ T
o —A. > kL c
> Jlog Mn k=1 lﬁ(
n ¥
= .k
o —1__ & -k
N> log lhn K=v+1 Mk
Upon subtraction it follows that A~
T -T A
1im 1 -—n._v.__, 2 £ 2\ A
n—2 log M b e
n v « W
or 7 . -
Lim I >e. (¥
T - 2 ~
B3> @ M 1og NO)
n n S
w\J
This is squivalent to (2), O
Remark,

Part (2} of Theorem 7 would
thecrem of Feller (Thearem 2 in (1033,

this condition (or rather a slightly we

also kave followed fran a general
but for, the cendition (13) there,
"

To verify
akar-‘ one)

it would be sufficient to show that

2n

We are unable tp prove or disprove {}us relation.

O
THECRHY 8, @é{‘(’o}

< 2}{*.~
ny

Pma& Th:.s is an immediate consequence of Theoreps 5and 7T,

Actually
we have even, fox\éva-y £E>0
N T, -T¢ -(1+e)/h
n
C O P(l—2| > M i0,) =
4l
We are indebted tg Dr. Miriam Lipsehutz fop Several corrections on the MS.

Cornell University
University of Illineis
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REMARKS ON FLUCTUATIONS OF SUMS OF INDEPENDENT RANDOM VARIABLES

By
K. L. CHUNG and M. KAC®

i. Introduction. Let Xy +%55+4» be independent, identically distributed

random variables and set

(1.1) 8y = X.I+X2+...+xk.

If each X harpens to assume inbegral multiples of some Tundamental unit it is of interet

to investigate statistical properties of the number Zn of zeros in the sequenge,
81585540 FEN In this case general results were obiained by Feller (11. ,{f\phe Xts do
not have the Tlattice! structure deseribed above one cannot speak sens;b.\y of the =zeros

and the problem must be reformulated.  Perhaps the most natural a.qgiogﬁe of Zn is the
number N of changes of sign in the sequence 51,5 eSSy (tWEmber of timnes the

luck changes, to use the terminology of the theory of games\mi‘ chanoe).

Ancther snalogue is the randem variable M (a) which xje;pqasents the number of s, fs,
bt} X )

N\

1<k<n, such that [ ] <a. ' QO
For X!'s with mcan ¢ and finite third moment (obeying the central limit theorem}

1/2

K. L. Chung {2] determined the limiting dith;:.'but:.on of Nn/

~

The limiting distribution turned out tgfbe the ttruncated normal? which except for a
nunerizal factor (depending on the Ila?t?l\n of the First absolute moments of X to the
standard deviation) is also the l&ﬁt:mg distribution of Zh/ 1/2 in the case the

>

Tlattice? valued variables Qhey “the central limit theorem.

If the Xls have the '1atxt'i<;e1 structure and belong to the domain of attraction of a
e\ _

symmetric stable 1a1-;\(bt:h exponent o > 1, the limiting distribution of Zn/ -1/

it is easy to show thal 1im Z, < w

has been detema{led by Peller [1]. Ifal< 1, ;

with nrcba.‘b\lty 1.

*, .
HWork cone on an CNR project.

Received by the editors Pebruary 13, 1950.
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It thus becomes of interest o investigate the statistical eroperties of Nn and Mn(a)

in the case the central limit theorem is violated and the normal distribution reslaced
by a general, syumetric, stable law,

In order te simplify the caleulations and thus bring out more clearly the rather curious
phencmena encountered in the non-Caussian case, we shall restrict ourselves to the case

when s11 the X's have the same, symmetric, stable distribution i.e.,

(1.2) Blexp(@§x,0} = e 1§17 ), 0 <dg,

Qur results can be summarized as follows:

1. If 1<4< 2, the Limiting distribution of
Ny Mp(a) o

— da 1
Y T _:Wd-

2NN
exist and can be explicitly caleulated, HMoreover, cxcept for nume:r;i&a}. Tactors, they
are identical with the limiting distributicn of zn/n1—1/d found b Feller [1].

¥ 4 N ¢
A\

2°¢>

&/
2. If o = 1 (Cauchy distributicn) the limiting distribut.ion:'oz\
N

" K (a) O
o w
2a log n .’i\
is exponential i.e., PN
S
¥ (a) ooON -
(1.3} im  Prf n 2 < @t- J e lrd;,r
M3 00 2a log n B9
, 4 ) o
whereas :“’,\\
P, £\ 7
N x
) -y
(1.4) lim  pr{ —s < x} = I e dy.
n—> to 2riflog n)
[+

o’

3. Ifed< T, Mn(a\i}}\;ﬁounded with probability 1, whereas

Q . N
A N -
(1.5} A\\Jim Pr{ —2 . <y} - J e ay,
N\ A— 20(el ) log n
2]

where the constant D{d ), will be given later.
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(2.1} v, (%) =
0, Ix| > a,
and dencte oy f’ (x) tne density fumetion of sk. We have
I
5 1 X 1 x
2.2 ¥y o= { = { .
(2.2) ):)k( / 1/ f1 7 ) = L f i/ }
How
L) E {\
(X ST T
(2.3) Hale) = 27080 O
AN
and 1 \’3
s N
a \ 3
(). 5 — (e Ja §2>
EM (a)} = 2 X = N
n e K 1/% f i 1/et \i\'
< O
K72
t/al AV
a/k "/
r E i'[w’
2 3 (xjixn2a P(C) 2 717k °
=1 J 1 S e N e
o “;\1 .
In other words ~ .
N\
AN !

(2.4) im ﬁ%— } j —S
L] 3 o = .
N0 2a ({J‘gn -1/dk g/

pN\Y;

LD
Te caleniate the secondg'hé?:ﬁent E{Mi(a]} vie need

‘m/
E{::{q@}va(sl 3 = prils | <a, lsg | <ab

dssume 3 &tr§;note that SR - Sk iz independent of s Moreover, the denaity

funetion of s Wg thus have

1

Pr{iskl < a, |s£ | < al =JI fk(x) fl_k(ﬂd}(dy’

I

-8, ig clearly fl—k(x)l.
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where [L is the region defined by the inequalities -a < x<a, -a< x+ y<a, The

area of this reglon is 422 and we have

2 2
Pr{|sk| < Ay |52 | < a} ——-—'—i':?m}.'/d f (0)1

Tt is now seen formally {and can be easily justified in a rigorous manner; that

M (a) dtTdtz
®:5)  Un e ) - o R (o )1
e *f oLt Lty <1 2

In general, we get
N\

M {a t dt » adt
(2.6)  lim E{(—L_/"Jm} = mi J . J : L ASd 7 1/a
n—3» oo 2a y(o}m-’_.l 2 1 ‘{ﬂ\(t -t j Sy 9
o< t1<t2<.u<tm<1 ,‘}'\
The integral on the right hand side of (2, 6) can be easlly reduced to beta functions obe

taining A ”‘\
db .ty 7\
) 1/‘(1& -t )1/"-"\ ...(t t,;})‘q/n{
ot &Kt <1 W W
1 N 1
J‘ ) N m~1 d-;
}“3 ~(m=1) k1 5 N
o Fum

o.
LCICEY A\

P {t+m(1 _..&}“.‘

A/
It now follows that the anmént. generating funetion of
$

M (a.) N\
(2.7) "\,

A\
Eaf{},:r‘ﬁ - 1—)n1"
auprocachesxas n— o, the function
m
iy
P (1+em{1 3 13

It wss recently shown by Pollard [3] that (2.8) is the moment genersting functioen of the

(2.8)

Jivig

st
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density function

o
o] =1
1 = k=1
{2.9) Ple) = 2 sin n{1 ~ Lk [(1sk(1 « Ty
n(t-1) et It ik Pt - 23
and thus
X
2ax
{2.10) lim  PriM {a) < } = s d(t)dt.
30 n of sin 2
A Q
Use has been made of the facts that
@ o N\
-1 { P g P rdro-be ot
flor =5 e §= < & a’ ", )
me, T
; ;> oy
% \"/

The treatment of N proceeds along similar lines. It is more conve&ie‘ht'. to consider the
n A 3

< .}}For large n  the

muaber Nn of sk's, 1 <k <n, for which o > 0, and S el \(‘\
statisticzl vroperties of N and o are the same. \VY
: i n n \\\
L t 'X:\ w
-3 L %%
‘:\
> N4
1 if u>r 0, v< 0, W
Y ={ N
0 otherwise. “‘{\z
wa h&V@ . ':':;\1
n=1 i
- ) A\
AT
X\
and AN\
",

Clearly i\\“

® ©
O
(2.11) §>P’i‘/{sk >0, 8,4 ¢ o} = J J J)k(x,l)f(x.l*xg}dx-ldxz N
o o

{0) o0 [ve) ‘
v T )] g
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Here we make use of the fact that for 1 <4< 2, f(x1+x2) is integrable (as a functicn of

two variables}),
In fact
@ [#3]
j Y(x1+x2)d11dx2 = J
]

=]

f(x)d.x diy =

o‘-—-—-—-;s

o

Yax < 1 M
JC.I f(x‘l jax = 5 J |le=(x}dx = '2' N\
-Cr 2N

and for 1 <d £ 2 the first absolute moment of Xj is finite., Thus ..i\

O Sy 8

1 4

- A dt, 1-1/4 PN
E{Nn}m 5 J)(G) S —t-'.}7§——-ll . "\'\'\.
1
o

To caleulate the second moment of R we need '\\:
n

.12 P "
(2.12) r{sk>0,sk+1<0,si>0,snj§,
Assuming > kel (if $= k+1 the above Pmb&bi,l.ity iz 0) we can write (2.12) as the quad-

ruple integral x‘~ 3

™I

N3

EIJJ’ Prl= P (-‘f’)’ Sf}_k_.l(z}f (ujdx dy dz du,

where fL is defined by tl}le uequalitles X206, 2y < 0, myez > 0, xy+z+u < G, By s

~

simple change of varli\ly we reduce this integral to the form

;:ﬁ\*oo =+

"\
,“}’\ ] J fk(x1) f(x.l*XeJ f.ﬁ—kq )f(x +thd.".( dx dedx‘F
N'o

[ o

which f@arg& k and k-1 can be replaced by the asymptotic expression

2
M2 1
JOE
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It follows that

at, dt
lim __—1—7-—-) . et ] I L
e pyeon L )

Higher moments can be calculated in a similar manner and we see that in the limit

p=——poc the diztributions of

% (a) 2N
and — 7
Eaf(o}n‘l"vd ﬂf(o)n -1/a

are identlcali.
2, The cace o < 1. N\
N, ¢
30 far the behaviour of Hn{a) apd N were essentially identicgl.\ For

N
« N/
el ¢ 1 {and o = 1) thiz is not the case anymare. ,u}‘
o A p |
We have (as in Section 2) a O
w7
N
a \ ¥
o \,
EiK (a)} = dx < AN
() = 2 (—5m) >
-

‘“/

1 N
(23?(0) % w<?x '\

N

ng sequen&éio} randon variables whose exp

18

and since Mn(a} is non_decreasi ectations are

bounded it follows that {~~~}\
Lm %y (a) = ¥_(a)
n——) o0

exists and is finite, with prbbabilit.y 1. The statistioal properties of N, ere mch

,\”.

more interesting. “\‘
W /

For a ﬁﬁi ¢ consider
™y

NS
NS

\\3”’ fk(’ﬁ) J-J (x1+x2)¢x1 ax,

c
Q0

PO 1/4
k—T/d. Ej f{k 1/2 x1) f (x1+x2)dx1d12 =k jj ?(x‘[) r(k‘l/ot’ﬁ"”é ))d-l(dxz

! Jdk
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By a theorem of Pblys [4], as x ——=b oo,
§ (c(d x-1-
where o

o{ek) = °\+w‘ 2 .

It follows that as ke @

L]
/A ” (x1)j>(k (ﬁ*xa))dx,dxa ~
ck-1/
= (x,) D{d}
™~ clgd) JJ £ L axan, - i O
(x1+x2) A o
o "\\
where o "\’\
C(at) j P ()
D(d = [Ndx
- v, e
Q0

.\

k 1 )’J Pk(x,')’f"(x "12}“1 dxzf"n(d) log n.

3

In particular, taking c=0 we obtain {as :.g?ection 2)

E{ﬁn} ~ Dl ) log n, N

Now we put }\
W(Lme) « 5 \\ J'fk1(x YRy iy yCeperyon,)

f( ATPXAT )
\?\“
.\&Q * "7(x1+-u+y£ 1% }f(x1+.. =Y g 1%y *7y )daﬁ...dyl_
where in thf smﬁmation we have 1 < ki < n and ki+1 < ki 1 for i=1,,,.,
We assum‘b\'t}hat
(3.1) W(E ,n,c) ~v (D( e )1og nJ
Then it i3 easy to see that
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Lo
R S kf < 02 g g i, (23§ xR ok eompo oy
Q
~g 5 —-P-gi)—(n(d) log (n—k1—1))x
1< k1 £ ned k1

~ (D{a )log n) *'.

Sinee (3.1) has bren shown to be true for § =1, it is true for 211 % by induction. In
particular, taking e==0 we ocbtain
L b 1
W( X,n,0)r (D(d ) Jog B)"
From this and the multinomial theorem we conclude that N
— A ¢
r:(n1 Jeo 21 W( L ,n,0)n 21(D{a J108 n)12 . ¢
n N
Consequently, " o
4N
x D
X ST
(3.2} im pr{ 2 <x}= e dy 2l .
n-——m> o Diav) log n \
4] :0)\\«
One should emphasize here the curlous fact that statiptical behaviour of N_ for all

A < 1 is essentially the same, the only dii‘fe{e,née"is in the numerical factor D{& ).

4s The case of = 1, I~

Preceeding as in Section 2 we ‘obtain

Q
EfM (a)}ro 2a pled, £\N2a (c) log n
" flo f

N 12 S A ~2i(za plo)log 0}
E{}i(a)}m(%ﬂw 2t 1 gzk Aen k(LK) f

P

It i3 easy to see thaﬁ\‘,:\i‘ﬁ' general,
o

angd consequagti? ’

<\‘.¢ <
’ ™ (a) ¥
(4.1) lim  Pr{—B < x} = 5 e d5.
—- 2a log n
o

Here we made use of the faet that
f(x) =3 12

14x
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so that Ji(o) = 1/%.
Te investigate the behaviour of Bln we proceed like in 3ection 3. Suppose ¢ =I= o .

Then
1 :
% i
k f (g} Pl Cxp oy ) Y, ax,
ekt
o0 @
! J ] 1 1 Q1
0 ——— dx_ = \ dx
"k [ 1 1+:t.'2 (x2x }2 & 2 Pk (hxajckﬂu;)
ck™ 2 » e "l
© . “E»\ )
= 21 (log X 3 J A log k N
mk 1ax -1 NG
ck : \\
Thus \\ g
w© ':Q.,
n=t " .1.\{’ ]
Z H Ficq) f (xgac, e dx e Ay ez n)

[+4 X.e
AN

-
It can be shown that this result remains true for es=e. Frem this point on the argument
is exactly the same as in the case o <‘:{\§“ Thus we obtain .

L x
(4.2 [ty & ean 7
. Lim Pr > <x}= J e dy.
n—»o o {lBg\\n}
P o
N\
N
W
{\{,/

N
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AN INVARIANCE PRINGIFLE FOR CERTAIN FRCBABILITY LIMIT THEOREMS®

By
MONRCE D. DCNSEER

1. Intreductien.
We consider a sequence 51,52,53,... of partisl swms of independent,

identically distributed random varlables u1,u2,u3,'" each having mean 0 and standard

deviation 1. Cne of the impacts of the central limlt theorem which states

L1 "\
lim  prob {5, <orn‘/2} = (21:)'1/2 exp(-t2/2)dt A
n—> 00 ) 4 \...\
-y N

N

is that the 1imiting distribution is independent of the original distl‘ibution of the
randam variables, With regard to limit theorems, we say the la.}ﬁt?xr:.a.m:s principlet

holds in ¢ particular ease if a limiting distribution exiats and is independent of the

distribution of the random variables involved. & methq&\\ developed by Erdds and Kae [1]

and [2] , for proving certain limit theorems consists of first proving that the in-

varisnce principle holds and then calculating 'r,he Iimiting distributicn by choosing a con-

venient distribution for the wvariables.
consisting of all continuous

@)

By Wiener space we mean h’aré the apace G
functions x(t) defined en 0 < t £ 1\(1:(0) 0) with Wiener measure imposed on C.

By the distribution function @ ({;‘) of & function F(x
= prob {F(x) <}, The objec‘o of this paper is to sh

) defined on § we mesh o ()
ow that if {yn} is a femily of

random variables such t.,h{t yn is a function of 51 32,..., 9 then under very weak

restrictions the lﬁgt}ng &istribution of ¥, is the same as the distribution of a re-
N\
S

N,
o 3

ris doctoral dissertation written under R.H.Cameron

This FApen. sV result of the write
. one in connection with an ONR~-

at the Uni«(efs:Lty of Minnesota. Centinued work on it was d

sponsored project at Gornell University.

'‘Numbers in brackets refer to the bibliography at the end of the paper.

@ For the definition of Wiener measure used here S€€ N. Wiener, Gwe_____é_ﬁé_ﬂ,n;{!l"_
Analysis, Acta Math., vol. 55(1930}, IPs 117-258, especially pages 214 31&0
Received by the editors January 2, 1950, and, in revisef_.rorm, June 23, 1950.
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lated functicnal on €, i.e., the limiting distribution of ¥, is indepemient of the dis-

tribution of the uts., In [1] Erafs and Kac demonstrated the invariance for the cases

Yo = mex(S,80, 00,800, max (181,180,001 1), ﬁ; 1 82, and 151'51!' These are

special cases of Theorem (4.4} of this paper where the corresponding functionals are re-
spectively
1

: 1
x(t), max Ix(t’)ls J. xett’)dt': J Ix(t)zdt"
1

max
oltg1 oL tg

In [2] the invariance was demonstrated for ¥,=N=number of positive partial\sums in the
N ¢
A

28

zequence 51,32,...,Sn. This is also a special case of (4.4) where Lhe\pofresponding
\ W .

1 (“}g

functional is 5 L.?ﬂg_x(.t;l dt. In [3] Fortet proved Rhfggihvariance property far
o i

n # \.:
2m , SO th
the case i, = > Si urdler the restriction that the “@m " moments be finite.
i=1

S
NN

Theorem (4.} generalizes this result since the gtimt’;rem helds with restrictions om omly

the first two moments and Fortet's result follows from the theorem by considering the
1 N
2m <
funetional x {t)dt. In [&] M{f‘k proved several limit thecrems analogens to those
O

° N
proved by Erdds and Kac in {1)\using their technique of first proving the invariance

N/

principle and then calcu]:at:siﬁg for convenient variables. agein the invariance principle

for sach of these limitt‘t;he’orems follows from (4.4} by considering the apprepriate
functional, \w\
"™\

&
2., The invariance ‘wrinciple for a particular limit thecrenm,

NS

"\} whet k be & fixed pesitive integer, o¢and ‘d’ be the vectors

&:{ vy, K2’"'"{k)’#:( 151, ‘52,..., ﬂk) and define

in

n = [T] (3=0,1,2,404,k} .
Let E, be the subset of the n~dimensional space (u.l ,ua,...,un} such that for all



3 AN INVARIANCE PRINCIPLE FCR CERTAIN OREM
FROBABILITY LIMIT THE
. (1; RO
351,250 005K
1/2

(2.1) ey o, <8, < (an)Y?

3 i-= /53 nj-r‘l i '<' nj
and et E  Dbe the subset of ¢ such that for all j=1,2, k

[EEXNY

o -
c{j_\_x(t., Sﬂj tEij

her i the 1 =
where Iku‘t he interval —Jkl <t S% . We prove the following Theorem, @

{2.2) 1im  P{E_} = P{E}.
I——3a2 n
Let E )
La
n,r be the subsset of (u1 ,uz,...,un) such that the j_ngqu,lities
{

2‘ antdgi'] o o
{2.1) are satisiied for 1=1,2,444,r~1 but are not satisfied for i=r. *dg\, see immediately

that 2%
< 3
(2 3 L0
+3) 1—P[En} =5 e L O

r=1 n,T v

Let 7 be any positive i & "1
: ive integer, &> O be assigned, and, {onsider the set of integers de-
fined b}r s“,\ -
_ j-1}n ! o :
AN p=0,1 000 ® o
For n << ) N .
3,p < nj,pﬂ’ we write 2\
(2.4) _ N 1/2
PE, - P{En’r‘}\\P{ISDj,pﬂ—SA > € (2n)V/E3eplE, JJPLIS, -s.l
3,pH
3 3
O < efem 3.
Since the u's have méaf,l:'() and standard deviatién t, we have from Tchebychefl*s inequality
AN \
@.5) ooy sy e/ 1/ AT
AN e T
< \™

rs here rather than n So that we may later use Lthe

N
{1) The normalizing factor 2n appes
to be convenient.

notation of Wiener integrals which seems

s the probability of the event
g, this means Wierner Measure.

(2) Here and subsequently P{ 1 mean or measure of the

set defined by the braces, If the set is in
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which shows that the sum of the first terms on the right in (2.4) is at most 1/2c270k,
Let F, be the subset of (1:11 ,uz,...,un) such that for all j=1,2,...,k

(211)1/2

2
X, <3, £ (211}1/ A (p=0,1,000, >},
37 i 3
and lst Fn e be the set defined by the same inequalities but with xj and ,gj re-
¥
placed by &4 and . The set E [ -8 | <efen 1/2} is obriously
J J n,T Sﬂj p+1 by
x

contained in the complement of Fo c and hence the swn of the second terms on the right
¥

in (2.4} is at most T—P[Fn c}‘ On the other hand, E,<CF_ and hence we geﬁ"}rom {2.3)
¥

and (2.4) .\".\'
(2.6) PlF, e} = 1/2 2 x» < P{E } < P{F . N

¢4
Let Dy be the subset of C sueh that for all J=1s2en0,k ’\

< (L= WFe By o =142, ¥
« < x(=liFe B < Ay (p=tisn.., > )
& :
and let D e be the set defined by the same inequaf[i\.ies but with s(j and r-4 3 re—
] NN

olaced by «Gre and pj—c. It is a consequgnc”g of the multidimensional central limit
theorem that : "

lim  P{F_ 3} = P{D,

o n,e p

"‘\
(2.7) \\
1m  pfr ) LBn, } .
o YO

In {2.6) if we hold c\:ﬁéﬁi Prixed and let n-—3o0 we get using (2.7}

(2.8) p{ns\ } - 1/2 ¢®®< 1in  ing P{E,} < lim sup P{E_} < F{D..).
“\ \ N—200 N300
\\ "4 P w3 co the seis Dz form a sequence of measurable sets whose
limit is EVso that P{D, } ~—— P{E]. Similarly P[Dv E} —> P{E.} where E_ is de-

fined as E exeept that aéj and pJ are again replaced by xj-rc, and ﬂ . Thus,

if in (2.8) we first let P — > amd then € -———) C we obtain the desired theorem.
For all 1=1,2,...,n define
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i .
W, for Agl-<t<i

_xh(t;w1,w2,...,un) =
W for t=0.

Let R, be the subset of (u.l,ua,...,un} such that for all j=1,2,...,k
Y -GF G¥ . O [
A L xn(t,51,52,.. ,Sn) < ﬂj for ¢ Ik,.l s

wheTe S}* =5 /\:.n)d'/z By an argument analogous to the procfof Theorem (2.2} and

using {2.2) it can be shown that

N
(2.9) 1im PR} = P{E}.
N——3x0 ,~\.
,?}\in a different

For the purposes of the next section it will be convenient to write (2

it ecuivalent wiy. For each 3=1,2,..4,K, let ..< 5
Yat ¥ 4
R W
pj = sup x(t) q‘_j = ﬂfIx(t}\::\.\
tEIk,j ke, d S
{n) L x'\\"
Pj = sup xn(t;s?,sg,...sn) qj M xn(t S*,...,Sg Ju
A t.
el s Sk’

Thus pj and U.j are each funetionals on & and p(n) and q(’;) are funetions defined
O J

R T : t,

n (u Hyslpsees,l } If we denote the charécterlstic function of a set A by xj\’ denote

by B the 2k-dimensional mterval"*\

-0 < 'Uis gnr
w. < rj\jé",,oo (11,2, 000 5K,

* 's(ﬂi:
. ()]
then {2.9) can be written

and lev $(u) be tl%distrlbutlon function commen to the u's,
N o) @ @ @
(2-10) 4 \ ~lllm %B p‘(in), ;n),-a-,nk ;q‘! ,qe ,---,qk ]dé(u‘l }d#(uz)
\o n--»}cx: :
-udi’(“n}
— e ——
0 & cver Ca

The novation jF[x]d w¥ indicates the Wiener integral of F{x]

=
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ey
jg[p-r ’pa; tra PRIy ;q.e: e ,qk]dwx.

By suitably combining hlocks of the form B, we can obiain (2.10) for a general in-
terval in the space ('-‘-”1, TE""’ ‘Zék). Using standard arguments of the Riemann

approximation type and the fact that the random variable (p.] sPpenesPL3y ,qe, ana ,qk)

has a density function!), we can obtain the
{2,11) Theorem. Let £( 1‘1 » 'pa,..., Tak} be Borel measurable, bounded cn the entire space

N\
(Z‘ ’ za,..., T. ), and Riemarn integrable on every finite Zk-dimensional, interval.
e \
Then >

2 N/

%
&

a ax
n) (n) (n) (n) (D) " (n)
1im f PELL H » ,c-., -
5 J j Pe 39 “12\ Q. Jab() ...ddk)
-0 =0

D
* J £(DPaRgs « 03Py 30 905 <045, I X
PR\ "

N
R

3. Ain spproximaticn theorem.

T

Let R be the space of finetions g{t) which are continuous except
possibly for a finite number of fuute Jumps en 0L t 1. Let Q be the set of
functisnals defined on R of thi\torm f(t 2,..., T ) where

%

T, = sup g(t}":" =inf g(t) {3=1,2,.04,k)
3 X ey Fpress
te:Fk{L"” ilkj
\NM .
and where f{ Ty %.w‘., Tek) satisfies the assumptions of theorem @.11). 'We prove
the following ~f:~,

31)@

Let F{g) be bounded and uniformly continuous in the uniform topology
on K.  Then, there exists a pair of sequences of functionals {Fﬁ(g]} and {lf*(gj] all

belonging to @ such that for each k and all g in R

(1)
For the case k=2 see Furth, Ann, D, Phys., 53:1917, 5. 177,
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(3.2) Ry (g) < Fla) S Filg)

and such that

Lad
. +
(3.3) lim (Flx] - ¥ [x])dwx = O,
Ym0
e
Let gi(t) = sup g(u) when L €L
uel kj
kJ
e . .
g {t) = inf glu) when t €Ty I\
k 1.16:1k
3 A\ ¢
¢ \A
YRS v s k3 “2 #
and let I be the set of functions h(t) in R such that g (1) £ n{th2 g, (t).
N
We then define A ¢
4 '\.
# 2\ Y
Fg) = sup F(b)
k heM
£ \
() = inf F(b) D
k . heM ’..x\ Nt

g \8
£ )

s N

we gshow that the sequences {F;(g}} and {F:j(:g’)‘} have the desired properties. It is
Since F;(g) and

obvicus from their definition that Fﬁ{gi’;‘a'hd F:*(g) satisfy (3.2}.

** & . =
F,"(g) are both bounded by the bo . of F(g}, it is sufficient In order to estakblish

/N

(3.3) to show the intecrand 11\‘(3.3) tends to zero for each fixed x(t) im C. This
x(t) is uniformly continuous oRt © £t <1

follows easily, however, i.';'t;fn: the fact that
/ s in the mniform topolozy.

and from the assumption’tMat F(g) is uniformly contimiou

N v ey
Fromi.»{n} definition of F:(g) and Fk {g) it is ¢lesr that they are

N’
functions of tyg\f\om £( Ty, ‘C2, e rsz vhere
AN

\\ji“' €, = sup g(t) Ceus inft Ig(t)
tEij € kj

(j=1;29"',k)°

s } * - ian Hali=belal )
at f ( T T T has fhe PBU'I.}.iIEd KJI‘I!I_'JE'I'blPﬂ it 1s s fficier t to sh
1’ o -y 21

continuous in all its 2k variables ot a

that f£( Lo LASERR -cak) ig bounded and

' Jordan messurable region and zero on its complement. Let £ be the subset of
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(Tys CTpseers Ty ) such that -::-j > Tyyy £F 371,2,0005ke e note that 15 both

Borel amd Jordan measurable, To show that F;(gj is in 2 we define

1’1( Ty, Toseees rgk) = sup F(h}
where the supremum is taken as h{t) varies over all funections in R sati.sfyi_ng for all
31,2, 000,k

+ [3
Tk+j_<_h{ )<‘Cj when Ikd’
provided this set of h(t ) is not empty. If it is empty, let e (t‘ 2""’\21:):0'
N

The set of (I'_I, Tyonees tEk) for which the set of h(t) 1s empty is eleafly the com-
NS ©

plement of { . Now the function 1‘1( Tys Tyoenny vhich is,p}ﬁf‘ihcd over the
. < A

2 T

whole space (7‘1, Tlaunny (‘2k) is elearly equal to Fi(gj wher:e(ei:.’this latter function

2
is defined. Hence it will be sufficient to show that fq\('(1;t‘ 3oy T, ) is con-
tinuous on {7 in the sense that if € > 0 is given d.n{{'t‘_',-('e,..., Ty y € 7, then
there exists a & > O such that :;.’
(34} ]f1( T.l, Ta,uo, t‘zk) ( 1’v 2,"': ek)I <¢
vhensver | Tj— 't'j} < & for J=12; 000, 2 and (T T, 2,..., 1: )G:P To show this,
\
choose g{t) € R such that for j= T\,\,n.,
'1'. = sup g(t) and -ck+j = inf g(t)
i€ kj -telkj
t\n
and for any other el*e{:g\nt' of R, eall it Z(t), let
O
Z8% sup Bt) and %, = inf g(t).
o ter, I e
o\ 4 kJ k)

\‘;
By assumption, there exists a A > O such that for any two functions h1{t) and hz(t.)
for vhich sup [hT(t.) - hy(t)] < & we have |F(hy) ~ F(h,)| < ef2. Let Mg

o< t<
dencte the set of functions h(t) in R such that ';;':* <h(t) B In order to

show {3.4) we see from the definition of F:{g) that we must show there exists a > O
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such that when p{L} is such that ! T, 'z}; < & for 3=1,2,.4:,2k then

(3.5} sup F(h) - sup F(n) | < e
{‘.&Mg heMg

There exists & innction hT(t) in Mg such that

(3.8) sup F(n) - F(h ) < &/2.
he¥ 1

Sy . .
Let h1(t.) = .11(t,; at all peints t whers A
inf F(t) < hylt) < sup 6y and h.ll(t} - inf P(t) i pgle)

) o N
b€ Iy velyy *= T *)

< inf glz) end h;(t._] - sup B(t)  4f hy(t) 2 sup B
t I tel, . tﬂl%a"
kj kJj \,\\\
Thus h/(t) as defined is an element of Mo and hence D y
. 1 g AN\
(3.7} P(n (t}) < sup F(h). R\
1 he My AY;
E QO
o\ 7

If we let &= A, then from the dei‘inition“ogﬁ.‘h‘l(t) we have

N

[hy(t) - h;(t)] < & and herce
5 s ’{\
(3.8) F(h,) < e/2 + FOY
1 \\\ /

From (3.6), (3.7), and (3.8 % get

{3.9) sup F(h;}‘é’éup F(h) <&
h (N
éMg..\'f:\ héﬁg

 { 3
By a symmetrical Qﬁl&lent we can show that

Sty F(n) - sup F(0) <&
{ heM

\h €M~
S
and hence Yhe desired inequality (3.5)s

& 8i T £ T T, sanes © )
gimilar argument would H‘Drl( for f; ( T1 3 re) ey b0 b where 2( 1° 2’ * 2k
is 4 o F { T wherever this latter
i =] + . S

fined on the space { ' T e x ) and 18 eqaal ® g}

function is defined, This completes the proof of theorem (Lot}
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4. The general invariance principle.

From (2.11) and {3.1) we see that if F{g) is bounded and uniformily con-

tinuous in the uniferm topology on R, then

L

{4a1) n{l'l_n; J ...J F[xn(t:ST,S;,...,Sz)] d$(u1)do1>(u2)...d,$(un)=J FPlx]d wx.

Let ¥V be the class of bounded functionals F(g) on R which are continucus in the

uniform tepology at almost all points (Wiener measure) of 0. We state the i‘enlﬁowing
(4.2) Theorem|1) "e \

A neceasary and sufficient condition that a ftmct:.onal Ng) be in ¥ is
that given an £ > O, there exist two functionals F1 (g} and Fz(g) bpth bounded and

¢*C
uniformly continucus in the uniform topology on R sa.tisi‘;,finp’g}qe conditiors

F,{g) £ F(g) < Fyle) N

s
J[Fe{x} - Fy (x)]dx<e. R WV

From (4,1} and (4.2) we see that if P(g) ivs.:tﬁéu;nded on B and is continuouns in the
uniform topology at almest all poinis of. C‘,’ *then

Tl

m
£ )

=43 o PN
{4.3) J J [x {t; 35 ,52,...,52)] d{:(u1J...d4>(un)=JF[x]dmx
- x—CD =

Although (h.3}) is atatedt&d’f' a real valued function on R, it is clear that (4.3)
"\‘~

holds alse for a comples valued function on R.  Thus in {k.3) if we replace F(g) by
&

izFig) ™3

e we st:LNZ satisfy the conditions that imply (4.3} even if now Flg) is un-

bounded =n3\be‘hce using the continuity theorem for characteristic functicns and letting

o7(aC denste the distribution function of F(x} i.e. (o) = P[F(x) <o}, we get the

(1)
The prod of this theorem follows closely the proof of the analopgous classical

necessary and sufficient condition for Riemann integrability.
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(4.4) Thsorel.
1f Fig) is defined on R and is continuous {uniform topolegy) at almost
{i ener measure) of C, then at every point of continuity of @&} we have

1im P& Flx (£;8%,5%,...,85)] <ac} = (),
N { AR T n

all points
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